
must be lower. Thus, the stress appearing in high-speed heating of the blooms cannot lead to loss of continuity of the 
metal and hence there is a possibility of increasing the design productivity of the apparatus. 

NOTATION 

T, temperature; p, c, )~, thermophysical coefficients; or, o, external heat-transfer coefficients; r, time; R, 
characteristic dimension; or, thermal stress in ingot cross section; e, deformation; Au, Av, increments in displacements 
over the x, y axes; k o = (oi-aT(T))/eT(T), stress-state coefficient. 
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MODELING MACROSEGREGATION IN AN INGOT, TAKING ACCOUNT 

OF ALLOY SHRINKAGE 

L. V.  Shaton, V. N. Kramarenko, and Yu. A. Samoilovich UDC 621.746.628.011.001.573 

A mathematical model is proposed for the description of  zonal segregation in an ingot of  quiescent steel 
on casting in a mold, taking account of alloy shrinkage. 

Despite the development of continuous-casting technology, most the steel forged in the USSR is cast in a mold. 
Both technologies have a common deficiency: the larger the ingot, the more impurity segregation occurs on solidification. 
The mechanism of zonal-segregation formation was described in [1-4], and experimental data have been obtained on 
the zonal segregation of various chemical elements on casting. However, in our view, no sufficiently complete method 
of calculating solidification [5, 3], taking account of melt flows and maintenance of the liquid core of the ingot on alloy 
shrinkage [1, 2], exists as yet. A mathematical model is created in the present work for the complex investigation of these 
processes. It is developed for the calculation of the thermal and concentrational fields and consists of a system of 
differential equations with the corresponding boundary conditions. 

The liquid-phase motion in the solidifying ingot is a superposition of the flux due to large-scale processes (such 
as stratification, mixing, etc.) and microfluxes arising on filling of the shrinkage volumes. First of all, the shrinkage 
component of the liquid-phase velocity is isolated, by writing the continuity equation. The metal density is a 
superposition of the densities of the solid Ps and liquid Pt phases, which are not equal but constants: p = ps~o + pt(1 -- ~o). 

Using the mixing rates of the solid and liquid phases vsh and veh, which satisfy the incompressibility equation, 
and also the shrinkage component of the liquid-phase velocity vly, the continuity equation is written in the form 

P,V (v,h rp) + PlY (vzh (1 --  q~)) = O, ( l )  

and, taking into account that dp/dr = 0, it follows that 

o (p,q~) + p , v  (v,~q~) + o (t,~ (1 - -  q~)) + p ,v  Iv~h (1 - -  ,p) + v,y (1 - -  (p)l = o. (2)  

Hence, substituting Eq. (1) in Eq. (2), an equation determining the shrinkage rate vly may be obtained 

0fp 
(p, - -  pz) ~ + # ,v  [vzy (1 - -  ~)l - -  0. (3) 
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Fig. 1. Diagram of calculation region: I) heat release to the surrounding 
space; II) calculation region. 

Fig. 2. General structure of calculation grid. 

Separation of  the liquid-phase velocity into two components is convenient for  the subsequent analysi~ of the 
problems, where motion of the ingot as a whole and electromagnetic mixing of the liquid phase together with shrinkage 
filtration are present. The filtrational component may be calculated using only Eq. (3), neglecting the first two p:mcesses 
in the first approximation. The solution of Eq. (2) is not unique, and therefore additional assumptions must be used to 
obtain the specific structures of filtrational flow: for example, that the rate of filtrational flow satisfies Darcy',, law [5] 

vz,j = - -  k/(~] (1 - -  q~)) (V P 4- Pq), (4) 

where P is the pressure in the ingot; pq is its "gravitational" component; k is the specific permeability of  the medium; 
rl is the dynamic viscosity of  the interdendritic liquid. Using Eqs. (4) and (3) leads to the need to solve an elliptical 
equation for the pressure and then to differentiate the solution in order to find v&. The model described te low is 
constructed on the basis of  simpler assumptions: 

a) the direction of the filtrational velocity component coincides with the direction of the temperature g-adient; 
b) the pressure gradient is proportional to the gradient of  the proportion of solid phase. 
Thus, the filtration rate is determined by the gradient of the proportion of  solid phase 

vly = - -  W % (5) 

where the coefficient  7 is calculated separately for  each calculational cell, so as to satisfy Eq. (3). This ensures a 
predominant direction of filtration from the "more liquid" metal to the "more solid" metal. In calculating the fillration- 
rate field, all the calculation cells are sorted in order of  decreasing proportion of solid-phase. Thus, for  successive cells, 
beginning with the first, the components of  the filtration rate vgy are found using the f in i te-di f ference analog of Eqs. 
(3) and (5). The velocities v&, vsh are assumed to be zero, but may be calculated using the Navier--Stokes ecuation. 
After calculating v ~ ,  vsh, v&, the conservation equation for the enthalpy may be written, taking account of  convection 
and heat conduction 

where the enthalpy is 

d[  
- -  7 ] ,  (6)  

dx  

I = [p~q~ + pt (1 - -  cp)] ( c T  - -  Lq~) (7) 

and the heat flux is 
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Fig. 3. Comparison of theoretical (1) and experimental (2) values of the 
impurity distribution in a horizontal cross section of the ingot: a) at a 
distance of 10% from the floor; b) 90% from the floor. C, %; g, %. 

Fig. 4. Comparison of the experimental (1) and theoretical - -wi th  (3) and 
without (2) taking account of  shrinkage -- values of the impurity 
distribution in a vertical cross section of the ingot; l '  is the distance from 
the floor, %. 

i = - -  Z v T .  (8) 

Combining Eqs, (6)-(8), the following result is obtained, taking account of continuity Eqs. (1)-(3) 

[P~(P "}- Pt (1 - -  q))] 63 (cT_.__._~) ._}_ PsV (r."shcTqD) + PtV [(rJzy-}-~lh)cZ ( I  - -  ( p ) ] :  
0z 

( 0 ,  ) (9, 
= v (Xvr) + [L~o(O, - -  p,) + (0,~ + Pz (I - -  9)) LI ~ + VVoh~ �9 

In particular, in pouring an ingot into a mold, the velocity of solid-phase motion Vsh -- 0. In the last term on the right- 
hand side, the component containing P8 --  Pe may be omitted. Note the absence of a term with the divergence of v0a in 
determining the source--sink of the heat of crystallization, since the solid phase of the flux is the carrier of this heat. 

The initial condition for Eq. (9) here is: T I r = o = To. At the boundary with the symmetry condition, zero 
gradient is specified. At the cooled surface, the boundary condition in the case of convectional transfer takes the form 

o T ]  _ -  

\ On Jsur cCcon(Tur - -  T~). 

The proportion of solid phase ~o depends on the temperature and mean concentration C of impurity in the given 
volume. According to the quasi-equilibrium model, the relative quantity of solid phase in equilibrium with the liquid 
at temperature T is determined by the formula [5] 

,p = (C? (T) - -  C)/(C? (T) - -  C* (T)),  

where Cs and C,*(T) for steel are determined, according to the iron--carbon state diagram, from the following 

dependences C~ (T) = -- 11.0388 + 0.278656.10 -1T - -  0.120163.10 -~ T ~, 

C* (73 = 15.4633 - -  0.124528.10-1T + 0.216279.10-ST 2. 

The derivation of  impurity-transfer equations in the liquid and solid phases is now considered. The total amount 
of impurity in the local volume is determined by the relation 

C = p,C~q~ + pz (1 - -  9) C~. 

The conservation equation for the concentration C is written in the form 
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dC = 0 ;  d(o~C~ri) + d(ozC~(1--qO ) = 0 .  
d ,  d ,  d'~ 

This equation breaks down into two, each of which describes the change in impurity content separately in the liquid and 
solid phases. It is necessary to introduce the intensity of interphase mass transfer J here. Taking account of diffusional 
transfer within each of the phases, 

d (9sriC,) _ __ Vls -Jr- J, d (9s (1 - -  ri) Cz) = __ V]z --d,  
dx d'~ 

where 1~ = DzV (qDC~); ]l = DzV ((1 - -  tp) Ct). 
The source--sink is defined as follows: If melting occurs, that is, 

dfl0 ari 
d--~ = O-~ -~- V (vshg)) < O, 

the impurity concentration in the solid phase C, = const, and material with impuri ty content C 8 passes to th(  liquid 
phase. This means that in the absence of interphase diffusion 

0qD 
( + v(<, hrit) �9 

If solidification occurs, i.e., dri 8r + V (V~h~) ~ 0 ,  solid phase with an impurity concentration Cs*CT) must 
d~ Oz 

be formed at temperature T, according to the phase diagram. Thus 

( 0ri X 

The equations of impurity mass transfer on taking account of shrinkage may be written in the form 

a (9.~c~.) + v (c,~v~;,,.rCD = 9~v(D~ v (~C , ) )  + 
aT 

dri 
, s C s  (T) t 0T ' t dT ~ 0 '  

+/ ) ,. p.p., ( ._ari + v (~.,,,,ri) , -.--dri 

a (oPz (1 - -  ri)) ( 1 0 )  
4-V [Prowl, (1.-- ~) Cz] + V [Pzv~v (1 - -  or) Of] = a~ 

= 9zV (Dzv (1 - -  rio) Cz)-- I C,* /Oq:, _ r,, : (r) t--~-~ + v O'~.,,,q")),, _.L_> o , d r i  

" c)q~ ~ d~ 
~',.~Cs ( + V (v~,,,ri) ! , - - -  < O. 

t 

In particular, on pouring casting in a mold, Vsh is zero. 

The initial condition for the solution of Eq. (10) takes the form: C, I ,  = o -- c,o, c e l ,  = o = ceo. At the 

boundaries determined by the symmetry and impermeability conditions, zero gradients are specified for the imp',lrities. 
The complexity of the differential  equations entails the use of numerical methods of  solution. The solution of 

some simplified models, not including shrinkage convection, was described in [ 1, 4]. The diff icul ty of solution is due 
to the strong nonlinearity of the system, the dependence of the source--sink on the temperature, and the complef i ty  of 
calculating the liquid-phase fluxes on shrinkage. 

The calculation region is shown schematically in Fig. 1, where 1 is the mold; 2 is the floor; 3 is the insulating 
charge. The liquid metal 4 is separated from the solid core 5 by the two-phase zone 6. 

Arrows 7 indicate possible directions of maintenance flow in the temperature-shrinkage zone. For the 
longitudinal cross section of the ingot, the temperature and concentration fields are assumed to depend on the time and 
two spatial variables. 

An analog of the large-particle method is used for numerical modeling [6]. The method is conservative for each 
additive characteristic of  the medium described by the conservation law. In calculating the convective flows, the Level'e 
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TABLE 1. Comparison of  Experimental and Theoretical 
Data on the Carbon Distribution in the Ingot Cross Section 

Distance 
from 
floor, % 

10 
90 

Experiment 

I at sur- at axis [ 
I face 

--29 --50 
+133 --50 

Calculation 

at axis [ at surface 

+30 [ --30 
+ 15o --30 

method is used. To calculate the change in the quantities characterizing the cell in the time step, the uncoupling method 
is used [6]. 

The algorithm for solution of the system of equations is now considered in more detail. The following 
calculations are performed within the time interval for each cell of the calculation region (Fig. 2). 

1. Equations (3) and (5) are solved. The possible liquid-phase fluxes at the boundary of  each cell are determined 
(using the technique of directed differences). (The shrinkage flux is calculated separately.) 

2. Equation (9) is solved. The state of  the cell may change on account of  thermoconductive transfer, convective 
transfer (due to natural or induced Convection), and also the action of  the source--sink, taking account of the 
maintenance flows in the solidifying zone of  the ingot. Determining the change in state of the cell in an the interval of 
time, the corresponding temperature value at a new moment of time is calculated by solving the nonlinear equation. 

3. Equation (10) is solved. The impurity concentration in the liquid and solid phases of  the cell changes as a 
result of phase transition, convection, and diffusion. Determining the change in state of  the cell in the time interval, 
the corresponding value of the concentration in the liquid and solid phases of  the local volume is calculated. 

The time step is chosen on the basis of  the stability requirement. 
As an example, numerical schemes are given for the solution of Eq. (10). The transfer on account of heat 

conduction in the given time interval is calculated from the formula 

Qt = - -  Ay ~,i-~i + ~u Tu ~ Ti-a~ Atj L:+~j -1- ~nJ T~j--  T~+~j 
2 Ax 2 Ax 

- -  Ax k~j-I + 2~i~ T i s - -  TH--1 - -  Ax kl.j+~ + ~ T i j - -  Ti:+I 
2 Ay 2 A j  

The change in state of the cell on account of the change in density is 

Q~I = AxAyc~:Tij (9') - -  p~.~), 

where pnij is the density, which is calculated at the new moment of time from the formula: Pij n = ps(Pij + pt(l - -  9ij). 
The convective transfer corresponding to the shrinkage component of the flux Q42 is now calculated; Q42m is 

calculated for fluxes directed into the cell and Qa2p for fluxes directed out of the cell 

Qazm = 9 i - l J  c i _ l j  T ~ - l j  mijlmi]>o - -  Pi+l] c~+1] T*+li  mi+iJ]mi+lj<~ 0 "31- 

+ 9iJ-1 cij-1 Tu-a nfi+~lnu>0 - -  91i+1 ci]+l Tid+l nij+llni]+l~O , 

where mij, m i + lj, nip nij + 1 are the fluxes through the cell boundary corresponding to the shrinkage component 

mii = u u (I --- q%j)luij<0 + ufj (I - -  qh_lj)luii>0, 

and Uij is the shrinkage rate of liquid-phase motion at the cell boundary. 
The convective transfer corresponding to the liquid phase is calculated analogously (Q2m is calculated for fluxes 

directed into the cell and Q2p for those directed out of the cell). 
The enthalpy of the cell is 

Q = p~j cij Tij AxAy + (Q1 -+- Q.,m + Q~) Ax. 

Solving the nonlinear equation (by the secant method, since the first derivative of the source--sink is not 
determined at the solidus and liquidus points) 

Q = [pij Ci~ Tz~" - -  pi~Lq~i) (Tin/, C)I AxAg - -  Q~vT~i , 
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hence it is possible to determine:  Tijn ' ~ijn(Tijn, C). 

The model developed here is used to study the segregation of carbon with an average carbon content of 0.12%. 
In the modeling, the fluxes due to thermal convection and mixing in the liquid phase are neglected. In Fig. 3, t~eoretical 
and experimental data on the horizontal segregation in casting are presented. Comparison of  the carbon concentrations 
obtained shows that the carbon content increases f rom the surface to the middle of  the ingot and agrees with [4]. 

A comparison of  the deviation of  the absolute concentrations of the elements (%) obtained from experiment [4] 
and as a result of modeling is shown in Table 1. 

Theoretical and experimental curves of  the axial vertical segregation are shown in Fig. 4. As is evident, the 
central zone of  the ingot has an increased impurity content over the whole axis. 

In modeling the solidification process, vertical nonuniformity of  the solidification front  of  periodic ~:haracter 
is obtained in the numerical model. The zones of advanced solidification lie at a distance of  40 cm (Fig. 4). This 
indicates a possibility of describing this phenomenon as the formation of a "bridge" at the base of the model developed. 
The presence of  the bridge means that an isolated volume is formed beneath it. In numerical modeling, maintenance 
flows to the solidifying volumes occur in the two zones A and B. The direction of these flows is shown by the, arrows. 

Graphs of the axial segregation of carbon in solidification when the maintenance flows are taken into account 
and ignored (using equal densities of the liquid and solid phases) are shown in Fig. 4. As is evident, taking account of 
melt filtration leads to change in the nonuniformity of the carbon content in the axial zone of  the ingot by 10% with 
respect to the mean level. 

Note that the model gives an overestimate of the level of axial liquation. In our view, this is due to the use of 
a quasi-equilibrium model of  solidification, which takes no account of  the kinetics of  nucleation and the crystel growth 
of the axial zone of  the ingot. 

As shown above, the model allows the nonuniform vertical solidification of an ingot - -  i.e., the for~at ion  of 
"bridges" and zones with peak concentrations of carbon at the ingot axis --  to be reproduced. 

NOTATION 

C s, concentration in the solid phase; Cg, concentration in the liquid phase; C, impurity concentnt ion;  r 
proportion of solid phase; Vsh, velocity of solid-phase motion; veh, velocity of liquid-phase motion; vey, shrinkage 
velocity component; p, density; c, specific heat; A, thermal conductivity; L, specific heat of  fusion; Ds, ciffusion 
coefficient in the solid phase; De, diffusion coefficient in liquid phase; r, time interval; Otcon, coefficient  of  convective 
transfer; T, temperature. 
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